Gossypium is the cotton genus . It belongs to the tribe Gossypieae , in the mallow family, Malvaceae , native to the tropical and subtropical regions of both the Old and New World . TheGossypium genusincluded around 50 species, [2] making it the largest in the Gossypieae tribe. New species continues to be discovered. [2] The name of the genus is derived from the Arabicword goz , which refers to a soft substance. [3]
Cotton is the primary natural fiber used by modern humans . Cultivated cotton is also a major oilseed crop, and a source protein for animal feed. Cotton plants thus have an enormous weight in the world economy and are of great importance to agriculture, industry and trade of many tropical and subtropical countries in Africa, South America and Asia. Consequently, the genus Gossypium has long attracted the attention of scientists.
The origin of the genus Gossypium is about 5-10 million years ago. [4] Gossypium species are distributed in arid to semiarid regions of the tropics and subtropics. Soil shrubs or shrub-like plants, the species of this genus are extraordinarily diverse in morphology and adaptation, ranging from fire-adapted, herbaceous perennials in Australia to trees in Mexico. [2]
Cultivated cottons are perennial shrubs most often grown as annuals. Plants are 1-2 m high in modern cropping systems, sometimes higher in traditional, multiannual cropping systems, now largely disappearing. The leaves are broad and lobed, with three to five (or rarely seven) lobes. The seeds are contained in a capsule called a “boll”, each seeded by fibers of two types. These fibers are the most commercially interesting part of the plant and they are separated from the seed by a process called ginning. At the first ginning, the longer fibers, called staples, are removed and these are twisted together to form yarn for making thread and weaving into high quality textiles. At the second ginning, the shorter fibers, called “linters,” are removed, and these are in the lower quality textiles (which include the eponymous Lint ). Commercial species of cotton plant are G. hirsutum (> 90% of world production), G. barbadense (3-4%), G. arboreum and G. herbaceum(together, 2%). Many varieties of cotton have been developed by selective breeding and hybridization of these species. Experiments are ongoing to cross-breed various types of species in the main commercial species, such as resistance to insects and diseases, and drought tolerance. Cotton fibers occur naturally in the colors of white, brown, green, and some mixing of these.
Most wild cottons are diploid , but a group of five species from America and Pacific Islands are tetraploid, apparently due to a single hybridization event around 1.5 to 2 million years ago. [4]The tetraploid species are G. hirsutum , G. tomentosum , G. mustelinum , G. barbadense , and G. darwinii .
Selected species
- Subgenus Gossypium
- Gossypium arboreum L. – tree cotton ( India and Pakistan )
- Gossypium herbaceum L. – Levant cotton (southern Africa and the Arabian Peninsula )
- Subgenus Houzingenia
- Gossypium raimondii Ulbr. – one of the putative progenitor species of tetraploid cotton, alongside G. arboreum
- Gossypium thurberi Tod. – Arizona wild cotton ( Arizona and Northern Mexico )
- Subgenus Karpas
- Gossypium barbadense L. – Creole cotton (Tropical South America )
- Gossypium darwinii G.Watt – Darwin’s cotton ( Galapagos Islands )
- Gossypium hirsutum L. – upland cotton ( Central America , Mexico , the Caribbean and southern Florida )
- Gossypium mustelinum Miers ex G.Watt
- Gossypium tomentosum Nutt. ex Seem – Ma ‘ o gold Hawaiian cotton ( Hawaii )
- Subgenus Sturtia
- Gossypium australe F.Muell (northwestern Australia )
- Gossypium sturtianum JH Willis – Sturt’s desert rose ( Australia ) [5] [6]
Formerly in genus Gossypium
- Gossypioides brevilanatum (Hochr.) JBHutch. (as G. brevilanatum Hochr. )
- Gossypioides kirkii (Mast.) JBHutch. (as Gossypium kirkii Mast. )
- Kokia drynarioides (Seem.) Lewton (as G. drynarioides Seem. ) [6]
Gossypium genome
A public genome sequencing effort of cotton was initiated [7] in 2007 by a consortium of public researchers. They agreed on a strategy for the genome of cultivated, allotetraploid cotton. “Allotetraploid” means that two distinct subgenomes are included, referred to as the At and Dt (the ‘t’ for tetraploid, to distinguish them from the A and D genomes of the related diploid species). The strategy is to sequence first the relative genome of allotetraploid cottons, G. raimondii , a wild American South ( Peru , Ecuadorcotton species, because of its smaller size due to less repetitive DNA (retrotransposons mainly). It is nearly one-third of the bases of cotton tetraploid (AD), and each chromosome is only present once. [ clarification needed ] The genome of G. arboreum , the ‘Old-World’ cotton species (grown in India in particular), would be sequenced next. Its genome is roughly twice the size of G. raimondii ‘s. Once both A and D genome sequences are assembled, then researches can begin to sequence the genomes of tetraploid cultivated cotton varieties. This strategy is out of necessity; If one were to sequence the genetic genome without a diploid genome, the euchromatic DNA sequences of the AD genome would co-assemble and the repetitive elements of AD genomes would be independently reported in A and D sequences, respectively. Then there would be no way to untangle the mess of AD counterparts.
The public sector effort continues with the goal to create a high-quality, draft genome sequence from reads generated by all sources. The public-sector effort has generated Sanger reads of BACs, fosmids, and plasmids, as well as 454 reads. These later types of reads will be instrumental in assembling an initial draft of the D genome. In 2010, two companies ( Monsanto and Illumina ), completed enough Illumina sequencing to cover the genome of G. raimondii about 50x. [8]They announced they would donate their raw reads to the public. This public relations effort has given them some recognition for sequencing the cotton genome. Once the D genome is assembled from all of this material, it will undoubtedly assist in the assembly of the genome of cultivated varieties of cotton, but a lot of hard work remains.
Cotton pests and diseases
Pests
- Boll weevil , Anthonomus grandis
- Cotton aphid , Aphis gossypii
- Cotton stainer , Dysdercus koenigii
- Cotton bollworm , Helicoverpa zea , and native budworm , Helicoverpa punctigera , are caterpillars that damage cotton crops.
-
- Some other Lepidoptera ( butterfly and moth ) larvae also feed on cotton – see list of Lepidoptera that feed on cotton plants .
- Green mirid ( Creontiades dilutus ), a sucking insect
- Spider mites , Tetranychus urticae , T. ludeni and T. lambi
- Thrips , Thrips tabaci and Frankliniella schultzei
Diseases
- Alternaria leaf spot , caused by Alternaria macrospora and Alternaria alternata
- Anthracnose boll rot , caused by Colletotrichum gossypii
- Black root rot , caused by the fungus Thielaviopsis basicola
- Blight caused by Xanthomonas campestris pv. malvacearum
- Fusarium boll rot caused by Fusarium spp.
- Phytophthora boll rot , caused by Phytophthora nicotianae var. parasitica
- Sclerotinia boll rot , caused by the fungus Sclerotinia sclerotiorum
- Stigmatomycosis , caused by the fungi Ashbya gossypii , Eremothecium coryli , (Nematospora coryli) and Aureobasidium pullulans
See also
- Cotton
References
- ^ Jump up to:a b “Genus: Gossypium L” . Germplasm Resources Information Network . United States Department of Agriculture. 2007-03-12 . Retrieved 2011-09-08 .
- ^ Jump up to:a b c Jonathan F. Wendel, Curt Brubaker, Ines Alvarez, Richard Cronn and James McD. Stewart. 2009. Evolution and Natural History of the Cotton Genus. In Andrew H. Paterson (Ed.). Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models, 2009, Volume 3, 3-22.
- Jump up^ Gledhill, D. (2008). The Names of Plants (4 ed.). Cambridge University Press. p. 182. ISBN 978-0-521-86645-3 .
- ^ Jump up to:a b David S. Senchina Ines Alvarez, Richard C. Cronn, Bao Liu, Junkang Rong, Richard D. Noyes, Andrew H. Paterson, Rod A. Wing, Thea A. Wilkins and Jonathan F. Wendel . 2003. Rate Variation Among Nuclear Genes and the Age of Polyploidy in Gossypium. Mol. Biol. Evol. 20 (4): 633-643.
- Jump up^ ” Gossypium ” . Integrated Taxonomic Information System . Retrieved 2011-09-08 .
- ^ Jump up to:a b “GRIN Species Records of Gossypium ” . Germplasm Resources Information Network . United States Department of Agriculture . Retrieved 2011-09-08 .
- Jump up^ Z. Jeffrey Chen, Brian E. Scheffler, Elizabeth Dennis, Barbara A. Triplett, Zhang Tianzhen, Wangzhen Guo, Xiaoya Chen, David M. Stelly, Pablo D. Rabinowicz, Christopher D. Town, Tony Arioli, Curt Brubaker , Roy G. Cantrell, Jean-Marc Lacape, Mauricio Ulloa, Peng Chee, Alan R. Gingle, Candace H. Haigler, Richard Percy, Sukumar Saha, Thea Wilkins and Robert J. Wright, Van Deynze, Yuxian Zhu, Shuxun Yu , Ibrokhim Abdurakhmonov, Ishwarappa Katageri, Ananda Kumar, Mehboob-ur-Rahman, Yusuf Zafar, John Z. Yu, Russell J. Kohel, Jonathan F. Wendel, Andrew H. Paterson. 2007. Toward Sequencing Cotton (Gossypium) Genomes. Plant Physiology, December 2007, Vol. 145, pp. 1303-1310. http://www.plantphysiol.org/cgi/content/full/145/4/1303
- Jump up^ APPDMZ \ gyoung. “Monsanto and Illumina Key Milestone Reach in Cotton Genome Sequencing” . www.monsanto.com . Archived from the original on 2016-02-01 . Retrieved 2016-01-31 .